If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-2x-440=0
a = 1; b = -2; c = -440;
Δ = b2-4ac
Δ = -22-4·1·(-440)
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-42}{2*1}=\frac{-40}{2} =-20 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+42}{2*1}=\frac{44}{2} =22 $
| 6-12+3a=15 | | 3y=(-55)-5y | | -2x*2=-7x+17 | | 3z=(-10*20)-10z+85 | | k/12+1/2=3 | | 1=2m−3 | | 3w=-5w+160 | | 3x=8x+55 | | 7x=115=136 | | 10+9x4=46 | | 15+w=3w+3 | | 3y+2=14y | | 242+x=401 | | 2.345x-8.273=-3.2(6.312x+5.128) | | 12x–12=60 | | 24+-3x=9 | | .3x–2=10 | | 10/x=0.02 | | 2w=2w-112 | | 2y=(4*18)-4y-66 | | 16=w/2-13 | | 12x+54=8x-4(-5+2) | | 33=22x-31 | | 7x-26=4x+10 | | 2x°+8x°+2x°=180° | | 2=2x+15 | | u+26=53 | | 4=x+30 | | m-27=33 | | 4n-9=16 | | r+4=51 | | 3y-26=16 |